- Title
- On the continuity of biconjugate convex functions
- Creator
- Borwein, J. M.; Vanderwerff, J. D.
- Relation
- Proceedings of the American Mathematical Society Vol. 130, p. 1797-1803
- Publisher Link
- http://dx.doi.org/10.1090/S0002-9939-01-06249-9
- Publisher
- American Mathematical Society (AMS)
- Resource Type
- journal article
- Date
- 2002
- Description
- We show that a Banach space is a Grothendieck space if and only if every continuous convex function on X has a continuous biconjugate function on X**, thus also answering a question raised by S. Simons. Related characterizations and examples are given.
- Subject
- Banach space; continuous convex function; conjugate function; Grothendieck space
- Identifier
- http://hdl.handle.net/1959.13/940332
- Identifier
- uon:12985
- Identifier
- ISSN:0002-9939
- Rights
- First published in Proceedings of the American Mathematical Society in Vol.130, No. 6, pp. 1797-1803, 2002 published by the American Mathematical Society.
- Language
- eng
- Full Text
- Reviewed
- Hits: 1796
- Visitors: 2061
- Downloads: 309
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT01 | Publisher version (open access) | 151 KB | Adobe Acrobat PDF | View Details Download |